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Highlights this performance year

• Formulation of Bayesian analysis for CS&E problems
• Developing a research area in Calibration under Uncertainty 
• Added UQ capabilities to DAKOTA
• Significant collaboration with 15000, including SEM 

sensitivity analysis, Agent-based logistics LDRD – working 
with David Schoenwald, Jean-Paul Watson, and Bill Hart

• PI for both the project on Prognostics for the F-16 
Accessory Drive Gearbox, and an LDRD on Prognostics



UQ methods within DAKOTA

• Global sensitivity indices
– Within Latin Hypercube sampling, added the capability 

to perform simple, partial, and rank correlations
• Updated some very old Fortran code and used Epetra

types to perform Cholesky decomposition, for example
• These are important metrics for “first cut” analysis of 

variables that most influence a simulation
– Variance-based decomposition:  decompose total 

output variance as sum of input variances
• Requires replicated samples for each input variable
• Will implement as part of replicated LHS and/or DDACE



Bayesian Analysis

• Construct a prior distribution on a parameter 
(which might be a parameter of a distribution)

• The prior distribution should be based on 
previous experience, engineering judgment

• The distribution on the prior is updated with 
actual data.  The resulting updated distribution is 
called the posterior. 
Frequentist Bayesian

Assumes there is an unknown but 
fixed parameter θ

Assumes a distribution on unknown 
parameter θ

Estimates θ with some confidence 
interval

Uses probability theory, treats θ as 
a random variable



Bayesian Analysis

• Why would we use it for Engineering Science problems? 
• Nice feature of incorporating additional data as it becomes 

available
• We often don’t have good estimates:  Bayes provides a 

framework for starting with what we do know, and refining 
our estimates in a statistically consistent manner

• Example:  Penetrator reliability (PRIDE LDRD) 
– Update probability of failure, update parameters in a 

surrogate model for a trust region
• Example:  Calibration under Uncertainty (CUU):  Update our 

parameter estimates based on experimental data AND 
uncertainty in a model



Bayesian Methods

Discrete Case

where θ is a parameter(s), x is a data vector, and p is 
a probability mass function. 
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Examples

• Use Binomial distribution to model the number of failures, x, in n trials. 

• We obtain data that shows 2 failures in 5 trials

• The posterior distribution reflects the fact that in this set of data, 
θ = 0.4 which is closer to 0.3 than 0.6 and so the probability of
θ=0.3 has risen slightly.
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Prior Probability Posterior Probability
P{θ=0.3}=0.1 P{θ=0.3}=0.13

P{θ=0.6}=0.9 P{θ=0.6}=0.87



FirstBayes Software

The dataset is a string of ones and zeros, representing the failure or 
success of the Rosenbrock function, where failure is defined as a function 
value > 1000 over the input range                         .  Approximately 10% of 
the points “fail” according to this threshold.
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FirstBayes Software

If instead we take a prior that is “non-informative” (but still has a mean of 
0.1), the prior has a much larger variance and so doesn’t influence the 
posterior as much.  Notice that the posterior is much closer to the likelihood 
function.



How are posterior distributions calculated?

• In the case of conjugate pairs, one can analytically 
calculate the posterior distribution

• Most cases are too difficult to calculate analytically, 
thus we need to go to a sampling method

• Most popular approach is called Markov Chain Monte 
Carlo (MCMC)

• In MCMC, the idea is to generate a sampling density 
that is approximately equal to the posterior.  We want 
the sampling density to be the stationary distribution 
of a Markov chain.  



Markov Chain Monte Carlo 

• How do we generate the Markov chain with the 
stationary probability that we want? 

• Construct a transition probability that will get you 
there

• Metropolis-Hastings and Gibbs sampling are the 
most commonly used algorithms

• Both have the idea of a “proposal density” which is 
used for generating Xi+1 in the sequence, conditional 
on Xi. The proposal density is often denoted as 
QY(Y|Xi)



Metropolis-Hasting
• Basic method:  generate a proposed sample from Q, calculate 

acceptance rate, calculate random number to see if candidate is 
accepted

• Issues:
– Does Q, the proposal density, need a special form? 

• Symmetric Q(X|Y)=Q(Y|X).
• Independent Q(Y|X)=Q(Y|)

– How long do you run the chain, how do you know when it is 
converged, how long is the burn-in period, etc.?

– ACCEPTANCE RATE is CRITICAL. Need to tune Q to get an 
“optimal” acceptance rate, 45-50% for 1-D problems, 23-26% 
for high dimensional problems

α(X,Y ) = min(1,
fX (Y )qY(Y | Xi)
fX (X)qX(Xi | Y )

)



BUGS and YADAS: Posterior distribution

Markov Chain for posterior distribution of p 
(Probability of Failure in Binomial Model)
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• It works best if your prior is well-defined and close to 
the posterior. 

• It is very difficult to tell if the chain has converged to the 
“true” underlying posterior

• It requires substantial statistical knowledge to formulate 
the posterior “proposal” distribution correctly

• Each problem requires tuning of the parameters that 
govern the Markov chain generation – step sizes, 
“leaping” parameters, etc.

Observations about MCMC



Some concerns about Bayes

• The Bayesian framework allows one to integrate 
observed data and prior knowledge:  conceptually 
very nice.  

• It won’t work well in cases where there is very little 
data or lots of data: optimum is where we have some 
data that is likely to be added to over time.

• In the context of many of the science and engineering 
problems encountered at Sandia, we need to 
seriously question the usefulness of the Bayesian 
approach.  



PRIDE LDRD
Three possibilities for Bayesian application

– Estimation of probability of failure 
– Estimation of hyperparameters that govern a surrogate 

model in a trust region or over the entire surface 
• Experience with a linear regression model: 

• Bayesian estimates for mean of β and for σ2 are the same as those 
obtained by classical regression or by Maximum likelihood 
estimates

• What does the Bayesian framework buy us?  Are we really going to
sample from values of the posterior of β to use in a simulation?   

– Multi-level surrogates
• Can we construct a surrogate based on a few high-resolution 

function evaluations, then update it with many low-resolution 
function evaluations or vice-versa?  This is a promising area. 

Li 0 1 i1 k ikE[y ] β +β X + +β X|β,X =



• Idea:  Want to account for both experimental uncertainty AND 
model uncertainty in the determination of model parameter values

• Building on the work of Kennedy and O’Hagan.
• Formulate a relationship between observations, “true” process, and model 

output as:  zi = ζ(xi) + ei = ρ η(xi,ti) + δ(xi) + ei
where z is the observed data, t is the observed value of parameters θ, ei is the 
observation error for the ith observation, ρ is an unknown regression parameter, 
and δ(x) is a model discrepancy or model inadequacy function that is 
independent of the code output η(x,t).

• η(xi,ti) and δ(xi) are Gaussian process models.  They are distributed with a 
mean and variance which are functions: e.g., η(xi,ti) ~ N (h(x)Tβ, c(x, x’)) where 
the covariance is often given as: 
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Calibration under Uncertainty



Calibration Under Uncertainty

• Calibration involves calculating a very complicated 
joint pdf on all of these parameters: ρ, σ, ω, h terms, 
β, λ, and θ.  

• Approach is to fix some of these terms, and estimate 
others.  Even KOH admit at this point, this is not 
readily tractable. 

• The “updating” does not have to be Bayesian – one 
could use Maximum likelihood as Dennis Cox at Rice 
does.  This removes problems with generation of the 
posterior distribution. 

• Whole approach is HIGHLY parameterized.



Current status on CUU

• Serious investigation of Gaussian process models
• Tried a couple of software packages, developing some code in 

MATLAB to generate predictions
• Talked with Tony Giunta and Tom Paez about the problem of ill-

conditioning, how much can Singular Value Decomposition 
solve? 

• Formulating an example with the Rosenbrock function:  difficulty 
separating the GP model error term from the observation error:

• zi = ζ(xi) + ei = ρ η(xi,ti) + δ(xi) + ei = GP1+GP2+ ei

• 3-4 papers on this work coming out over the next 6 months



Sensitivity Analysis for SEM Model

• Approach:  Latin Hypercube Sampling (2-loop sampling), examination of 
correlation coefficients

• Findings thus far:  for very large model with thousands of discrete 
variables, correlation coefficients are not very meaningful.  You need to 
have the model operating near a “optimal” regime (can’t be flush with 
resources or parts, for example) to determine the impact of adding more 
personnel or inventory.

• At this point, we are tuning the model and experimenting.  We would 
like to have a hierarchical formulation of VBD:  vary all MTBF values by 
20% vs. all manpower levels by 20% to see which has greater impact.

• Optimization BEFORE sensitivity analysis
• Applicability of results/understanding to David Schoenwald’s Agent-

Based Logistics LDRD

Squadron A Squadron B

Base

Repair OEM

Supply



Sensitivity of Material Parameters on 
Component Response Environments

• Life Extension Program 

• Partial Correlations:  Inputs to Outputs
– E3, E4 and E5 are mildly correlated with the outputs.
– E1, E2, and E6 are not significantly correlated with the 

outputs.
– Parameter correlation varies with location and 

orientation. 

• Response Surfaces / Contours
– Because of the non-linear response, this study 
did not reveal (flat) regions where changes to the 
input parameter values have little effect on 
the calculations.  No plateaus.

• Partial Correlations: Output to Output (low frequency response)
– High correlation of the output variables suggests rigid-body mode 

shape in the structural behavior.
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Service/Publications

• Mentored John Eddy, excellent student from SUNY Buffalo.  He 
developed a Multi-objective GA which I incorporated into 
DAKOTA, adding Pareto optimization, warm start, and mixed 
GAs.

• Developed a modernized standalone version of LHS for UNIX 
systems, in process of getting that version of LHS copyrighted 
for inclusion in DAKOTA

• Taking on leadership roles in PRIDE LDRD, CUU work, and 
CSRF OUU project

• Reviewed 6 Papers
• Interviewed 5 candidates
• Active in Society of Women Engineers
• INFORMS:  Two talks in Oct. 2003 annual conference
• SAMO, Stanford Monte Carlo course



Conclusions/Future Work

• More UQ methods in DAKOTA, specifically sensitivity 
measures (variance based decomposition) and 
sampling methods (quasi Monte-Carlo methods, 
bootstrapping, importance sampling)

• Continue the Calibration under Uncertainty/ Gaussian 
Process model/Bayesian work

• Become the resident team expert on Pareto 
optimization

• Continue work on sensitivity analysis for large 
discrete models

• LDRD on “Robustness” – combination of evolutionary 
representations and stochastic dynamic programming
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